MAT 1200: Introduction à l'algèbre linéaire

Saïd EL MORCHID

Département de Mathématiques et de Statistique

Chapitre 5: Les Déterminants

Références

Déterminants d'ordre 1 et 2 Définitions Exemples

Sous-matrices A_{ij} - Mineur- Cofacteurs Mineur Cofacteur

Le déterminant d'une matrice 3×3

Le déterminant d'une matrice $n \times n$

Propriétés des déterminants

Les déterminants et les matrices inversibles

Matrice des cofacteurs. Matrice adjointe

La règle de Cramer pour résoudre un système

Références:

- Notes de cours chapitre 5 .
- Livre: Chapitre 3 page 175

Déterminants d'ordre 1 et 2

Définitions

1. Cas d'une matrice 1×1 :

Soit $A = (a_{11})$ une matrice de type 1×1 , le déterminant de A est

$$\det(A) = |a_{11}| = a_{11}$$

2 Cas d'une matrice 2×2 :

Soit
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
. Le déterminant de A est le nombre réel

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Exemple

$$A = \left(\begin{array}{cc} 1 & 5 \\ -2 & 4 \end{array}\right).$$

Sous-matrices A_{ij}

Mineur

Soit $A=(a_{ij})$ une matrice carrée de type $n\times n$. Alors la matrice A_{ij} de type $(n-1)\times (n-1)$ désigne la sous-matrice formée des éléments de A qui restent après avoir supprimé la $i^{-\grave{e}me}$ ligne et la $j^{-\grave{e}me}$ colonne. Le déterminant de la sous-matrice A_{ij} est appelé le mineur de a_{ij} .

Exemple

Soit la matrice

$$A = \left(\begin{array}{cccc} 1 & -2 & 5 & 0 \\ 2 & 0 & 4 & -1 \\ 3 & 1 & 0 & 7 \\ 0 & 4 & -2 & 0 \end{array}\right)$$

Trouver les sous-matrices A_{32} , A_{43} .

Cofacteur

Définition

Soit $A = (a_{ij})$ une matrice carrée de type $n \times n$. On appelle **cofacteur** de l'élément a_{ij} le nombre

$$C_{ij} = (-1)^{i+j} \mathrm{det} A_{ij}.$$

Exemple

Soit la matrice

$$A = \left(\begin{array}{rrr} 1 & -2 & 5 \\ 2 & 0 & 4 \\ 3 & 1 & 0 \end{array}\right)$$

Trouver les cofacteurs C_{21} , C_{22} et C_{23} .

Le déterminant d'une matrice 3×3

Définition

Soit $A = (a_{ij})$ une matrice carrée de type 3×3 . Le déterminant de la matrice A est le nombre réel:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

$$+ a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{12}(a_{21}a_{33} - a_{31}a_{23}) + a_{13}(a_{21}a_{32} - a_{31}a_{22})$$

On dit qu'on a développé le déterminant par rapport à la première ligne.

Exemple:

$$A = \left(\begin{array}{ccc} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{array}\right)$$

Le déterminant d'une matrice $n \times n$

Définition

Le déterminant d'une matrice $A = (a_{ij})$ de type $n \times n$ est

$$\det A = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$$

$$= a_{11}\det A_{11} - a_{12}\det A_{12} + \dots + (-1)^{1+n}a_{1n}\det A_{1n}$$

On dit qu'on a développé le déterminant par rapport à la première ligne.

Exemple:

$$A = \left(\begin{array}{cccc} 6 & 0 & 0 & 5 \\ 1 & 7 & 2 & -5 \\ 2 & 0 & 0 & 0 \\ 8 & 3 & 1 & 8 \end{array}\right)$$

Théorème:

Le déterminant d'une matrice $A = (a_{ij})$ de type $n \times n$ peut être calculé par un développement selon n'importe quelle ligne ou selon n'importe quelle colonne.

• Le développement selon la $i^{-\grave{e}me}$ ligne s'écrit:

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}$$

• Le développement selon la $j^{-\grave{e}me}$ colonne s'écrit:

$$\mathsf{det} A = a_{1j} \, \mathsf{C}_{1j} + a_{2j} \, \mathsf{C}_{2j} + \dots + a_{nj} \, \mathsf{C}_{nj}$$

Exemple:

Calculer le déterminant de la matrice

$$A = \left(\begin{array}{ccccc} 3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0 \end{array}\right)$$

Théorème

Le déterminant d'une matrice triangulaire A est égal au produit des éléments de sa diagonale.

Exemple:

Calculer le déterminant de la matrice

$$A = \left(\begin{array}{ccccc} 3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0 \end{array}\right)$$

Théorème

Le déterminant d'une matrice triangulaire A est égal au produit des éléments de sa diagonale.

Propriétés des déterminants

Théorème:

Soit A et B deux matrices carrées.

- a) $\det A^t = \det A$,
- b) si A contient une ligne ou une colonne de 0, alors $\det A = 0$.
- c) $det(AB) = detA \times detB$

Théorème: Opérations sur les lignes

Soit A une matrice carrée.

- a) Si une matrice B est obtenue en ajoutant à une ligne de la matrice A un multiple d'une autre de ses lignes, alors $\det B = \det A$.
- b) Si B est la matrice obtenue en permutant deux lignes de A, alors $\det B = -\det A$.
- c) Si B est la matrice obtenue en multipliant une ligne de A par k, alors det B = k det A.

Dans ce théorème, on peut remplacer le mot ligne par colonne.

Théorème: Opérations sur les colonnes

Soit A une matrice carrée.

- a) Si une matrice B est obtenue en ajoutant à une colonne de la matrice A un multiple d'une autre de ses colonnes, alors $\det B = \det A$.
- b) Si B est la matrice obtenue en permutant deux colonnes de A, alors $\det B = -\det A$.
- c) Si B est la matrice obtenue en multipliant une colonne de A par k, alors $\det B = k \det A$

Exemple:

$$A = \left(\begin{array}{rrrr} 2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6 \end{array}\right)$$

Les déterminants et les matrices inversibles

Théorème:

- Une matrice carrée est inversible si et seulement si $\det A \neq 0$.
- Si A est une matrice carrée inversible, alors

$$\det\! A^{-1} = \frac{1}{\det\! A}.$$

Exemple:

Est ce que la matrice suivante est inversible?

$$A = \left(\begin{array}{cccc} 3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ -6 & 7 & -7 & 4 \\ -5 & -8 & 0 & 9 \end{array}\right)$$

Théorème:

• Soient $\vec{u_1}, \vec{u_2}, \cdots, \vec{u_n}$, n vecteurs de \mathbb{R}^n et A la matrice dont les colonnes ou les lignes sont les vecteurs $\vec{u_i}$. Alors $\vec{u_1}, \vec{u_2}, \cdots, \vec{u_n}$ sont indépendants si et seulement si le déterminant de A est non nul

Matrice des cofacteurs. Matrice adjointe

Définition:

• Soit A une matrice carrée de type $n \times n$. La matrice des cofacteurs de A, notée Cof(A), est la matrice obtenue de A en remplaçant chaque terme a_{ij} par son cofacteur. On a

$$Cof(A) = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{pmatrix}$$

Définition:

• La matrice adjointe de A, notée adjA, est la transposée de la matrice des cofacteurs de A. On a

$$adjA = \begin{pmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{pmatrix}$$

Théorème: Une Formule de l'inverse

Soit A une matrice inversible de type $n \times n$. Alors

$$A^{-1} = \frac{1}{\det A}(\operatorname{adj} A).$$

Exemple:

Calculer l'inverse de la matrice

$$A = \left(\begin{array}{ccc} 2 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 4 & -2 \end{array}\right)$$

La règle de Cramer pour résoudre un système

Dans cette section, on considère

- A une matrice inversible de type $n \times n$,
- \vec{b} un vecteur de \mathbb{R}^n .
- $A_i(\vec{b})$ la matrice obtenue en remplaçant dans A la $i^{-\grave{e}me}$ colonne par le vecteur \vec{b} .
- (S) le système linéaire $A\vec{x} = \vec{b}$.

Théorème: La règle de Cramer

Les composantes de l'unique solution du système (S) sont données par

$$x_i = \frac{\det A_i(\vec{b})}{\det A}, \quad i = 1, 2 \cdots, n$$

Exemple

Résoudre par le règle de Cramer les systèmes

$$(S_1) \begin{cases} 3x - 2y & = 6 \\ -5x + 4y & = 8 \end{cases}$$
$$(S_2) \begin{cases} 2x + y + 3z & = 2 \\ x - y + z & = 1 \\ x + 4y - 2z & = -1 \end{cases}$$